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1) Background: Passive brain-computer interfaces (BCIs) are a key element for 

Neuroergonomics due to their ability to reveal covert brain activities (e.g. mental workload, 

attention). In turn, this information can be used to improve human-machine interaction (HMI) to 

construct real-time feedback loops (Ayaz and Dehais, 2019; Lotte and Roy, 2019; Aricò et al., 

2016; Dehais et al., 2019). Previous studies demonstrated several proof-of-concept applications 

of this technology by designing systems that adapt to the user's cognitive or affective states 

(Ewing et al., 2016; Yuksel et al., 2016). Still, one major challenge remains to be addressed—the 

large within-subject variability and non-stationarity intrinsic to brain signals such as 

electroencephalography (EEG) signals. It is therefore crucial for a BCI to operate across sessions 

or days without recalibration. 

2) Methods: In this study, we develop a Deep Neural Network for passive BCI for mental 

workload detection using the EEG data provided by the 

Passive BCI Hackathon organized by the 

Neuroergonomics Conference 2021. Dataset: The EEG 

data includes recordings from 15 subjects (6 females 

and 9 males, with an average age of 25 years) each of 

which includes 3 different sessions separated by a 

week. Each session includes recordings of EEG 

activity while participants completed a MATB-II task 

with three different difficulty levels— “easy”, 

“medium”, “difficult” (administered in a previously 

determined order). In the easy condition, subjects were 

given the Track and System Monitoring task. In the 

medium condition, the Resource Management task was 

added on. Lastly, in the difficult condition, a 

communication task was added for a total of 4 tasks 

simultaneously. The first two sessions are used to train 

the model whereas the third session was used as a test 

set. Using a 64 active Ag-AgCl Electrode 10-20 

system; 62 of the electrodes were used to gather data. 

The data is preprocessed by using a high-pass filter and 

Z-score normalization to unify different EEG metrics 

to a single metric (Robert et al, 2015). The dataset was 

split randomly in a stratified fashion into two training 

and validation sets (70% /30%, respectively). The data 

was fed to the architecture in a real-time fashion across a given time window. Two time windows 

were tested (0.0625s and 0.25s), where a shorter time window would result in faster BCIs 

response, in a tradeoff against lower accuracy. Models: Our proposed model uses 3 layers of 

Convolutional Neural Network (CNN) which are fully connected to either 2 layers of Long 

Short-Term Memory (LSTM) or Bidirectional Long Short-Term Memory (BiLSTM) (Zhang et 

al., 2017). Also, a simpler model (only BiLSTM layers) was used to calculate the weights of each 

 
Fig.1 Proposed Deep Neural Network. The 

tasks are first being uploaded and preprocessed. 

Z-score normalization is being used to unify 

different EEG metrics to a single metric. Then, 

the data is being transposed into a data mesh. 

The size of the data mesh depends on the number 

of electrodes being used. The data mesh is fed to 

the first layers of CNN, then to the layers of 

LSTM or BiLSTM through a fully connected 

layer and finally another fully connected layer 

for prediction. 



electrode to filter only the most important electrodes. A further model uses data preprocessed 

with only 13 prefrontal electrodes (F7, F5, F3, F1, F2, F4, F6, AF3, AFz, AF4, Fp1, Fp2, Fz) 

since previous studies indicate that the prefrontal cortex reflects changes in mental workload 

(Geissler et al., 2021). These models were fitted both to the whole dataset and to individual 

recordings, in order to evaluate inter-patient variability. 

3) Results and Discussion: The single-electrode model returned the same accuracy (44%) for 

each electrode, hence assigning equal weights in predicting the workload. The models that use all 

electrodes show significantly higher training and validation accuracies. When using all 

electrodes, the BiLSTM models have a training/validation accuracy of 96%/82%, while LSTM 

models have a training training/validation accuracy of 96%/81%, When using only the prefrontal 

electrodes, BiLSTM models have a slightly higher training accuracy than LSTM but a very 

similar validation accuracy to LSTM when using the same number of epochs. These generic 

models show a training/validation accuracy 92%/75% hence revealing overfitting. Our findings 

suggest that decreasing the number of electrodes will slightly decrease the accuracy of 

generalized models. In addition, when fitting models to single-subject data, maximum 

training/validation accuracies of BiLSTM were 100%/99% with an average training accuracy of 

100% and an average validation accuracy of 92%. The LSTM model performed similarly, with 

an average of training accuracy of 100% but with a lower validation accuracy of 84%. 

Interestingly, using 13 electrodes only to create single patient models resulted in lower accuracies 

(max 99%/89%, average 95%/81%). These results suggest that individual models with BiLSTM 

layers are more effective compared to generalized models to classify the mental workload while 

exploiting the data from all 62 electrodes. This may come at a cost in between-patient generality. 

Overall, our model trained separately for each individual is able to predict the mental workload 

with a high accuracy overcoming the problem of inter-session variation of EEG signals. We hope 

to further develop a model that would overcome the inter-subject variation in the future studies. 
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Table.1 Accuracy results from different models. Different models have been tested to understand for a comparison analysis. 
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